일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 반도체
- Semiconductor
- stl
- 반도체기초
- C++
- cloud
- Qubit
- flash_memory
- sycl
- jhDNN
- SpMM
- 딥러닝
- HA
- dnn
- 클라우드
- DRAM
- CUDA
- convolution
- POD
- Compression
- FPGA
- quantum_computing
- 쿠버네티스
- jhVM
- 양자역학의공준
- GPU
- CuDNN
- deep_learning
- nvidia
- kubernetes
- Today
- Total
목록TensorRT (3)
Computing
이전 글 2022.06.14 - [Deep Learning/Optimization (Algorithm)] - TensorRT (1) 개념, 최적화 방법, Workflow (Layer Fusion, Quantization 등) 2022.07.08 - [Deep Learning/Optimization (Algorithm)] - TensorRT (2) 설치 및 샘플 테스트 (Ubuntu 18.04 기준) 이전 글들에서 TensorRT의 기본 개념 및 설치 방법에 대하여 알아보았다. 이번 포스터에서는 TensorFlow 딥러닝 네트워크를 TensorRT로 최적화하는 방법에 대하여 정리하고자 한다. TensorFlow의 TensorRT integration 문서[1]를 참고하여 정리하고자 한다. TF-TRT Te..
이전 글 2022.06.14 - [Deep Learning/Optimization (Algorithm)] - TensorRT (1) 개념, 최적화 방법, Workflow (Layer Fusion, Quantization 등) 이전 글에서 TensorRT의 기본 개념에 대하여 소개하였다. 오늘 포스터에서는 TensorRT의 설치 방법을 정리하고자 한다. TensorRT의 설치 방법은 공식문서, wikidocs를 참고하였다. 설치 방법 (0) TensorRT는 C++ library이다. 따라서 C++ API를 제공하는데, 추가적으로 Python API도 제공한다. (1) 준비물 CUDA toolkit, PyCUDA 설치 필요 pip install numpy cupy Kepler architecture 이상의..
NVIDIA TensorRT는 "A high-performance deep learning inference SDK for production environments" 이다. 즉 실제 딥러닝이 배포되는 환경에서 NVIDIA GPU를 이용해 딥러닝 추론을 가속 & 최적화 할 수 있는 SDK이다. 이번 포스터에서는 빠르고 효율적인 추론만을 위해 설계된 TensorRT에 대해서 정리해보고자 한다. TensorRT가 도입된 배경 및 간략한 소개 딥러닝 네트워크의 정확도 향상을 위해 딥러닝 네트워크가 깊어지고 더 많은 parameters를 가지면서, 네트워크 추론을 위한 연산량은 계속 증가하고 있다. 연산량의 증가는 곧 긴 추론 시간, 많은 메모리 사용, 많은 전력 사용을 의미할 것이다. 음성 인식, 번역, 자율..