일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- C++
- jhVM
- kubernetes
- convolution
- 반도체
- cloud
- jhDNN
- SpMM
- CuDNN
- CUDA
- flash_memory
- sycl
- 클라우드
- Qubit
- Semiconductor
- DRAM
- 양자역학의공준
- nvidia
- 쿠버네티스
- deep_learning
- FPGA
- 반도체기초
- stl
- quantum_computing
- GPU
- 딥러닝
- POD
- Compression
- HA
- dnn
- Today
- Total
목록convolution_forward_algorithm (2)
Computing
이전 글 : 2022.05.04 - [Deep Learning/jhDNN] - cuDNN Convolution FWD Algorithm 분석 (1) Overview 이전 글에서 cuDNN의 convolution forward algorithm에 대하여 간략히 분석해 보았다. 오늘은 각 알고리즘의 성능을 많이 사용되는 convolution layer configuration 별로 정리하고자 한다. 실험 환경 이 실험은 게임 실행을 위해 설계된 데스크탑 시스템에서 진행되었다. 일반적인 게이밍 환경에서의 결과 리포트는 이것이 (거의) 처음일 것이니, 이 실험 환경 또한 큰 기여를 할 것이라고 생각한다. Table 1.은 실험 환경을 정리한 표이다. 모든 실험은 50회 반복 실행한 결과이며, 시간은 50회 실행..
이전 글 : 2022.04.26 - [Deep Learning/jhDNN] - jhDNN - 3 : Convolution 연산 및 GEMM-Convolution에 대한 고찰 (Feat. im2col) 이전 글에서 cuDNN의 convolution forward algorithm에 대해서 간단히 소개하였다. 앞으로 각 알고리즘에 대하여 분석해보고자 한다. cuDNN Convolution FWD Algorithm Overview cuDNN에서 공식 제공하는 convolution FWD algorithm은 다음 8개이다[1]. cuDNN은 구체적인 구현 방법은 공개하지 않기에(not open-source), 괄호 안에 개인적인 구현 방법 추론을 적어두었다. CUDNN_CONVOLUTION_FWD_ALGO_DI..