일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- quantum_computing
- stl
- Qubit
- 반도체기초
- flash_memory
- DRAM
- C++
- jhDNN
- 양자역학의공준
- kubernetes
- sycl
- CUDA
- 클라우드
- 반도체
- SpMM
- CuDNN
- cloud
- GPU
- 쿠버네티스
- deep_learning
- Compression
- nvidia
- HA
- Semiconductor
- FPGA
- jhVM
- POD
- dnn
- 딥러닝
- convolution
- Today
- Total
목록Quantization (3)
Computing
이전글 2022.03.29 - [Deep Learning/Optimization (Algorithm)] - Compression - 1 : Overview 2022.04.29 - [Deep Learning/Optimization (Algorithm)] - Compression - 2 : PyTorch Pruning Tutorial 및 계산 속도가 빨라지지 않는 이유 2022.06.15 - [Deep Learning/Optimization (Algorithm)] - Compression - 3 : Quantization 개념 (1) 지금까지 딥러닝 네트워크의 효율적인 배포를 위한 네트워크 압축(compression) 기술들 및 그 중 quantization 기법에 대하여 정리하였다. 오늘 포스터에서는 qu..
이전글 2022.03.29 - [Deep Learning/Optimization (Algorithm)] - Compression - 1 : Overview 2022.04.29 - [Deep Learning/Optimization (Algorithm)] - Compression - 2 : PyTorch Pruning Tutorial 및 계산 속도가 빨라지지 않는 이유 이전 포스터에서 딥러닝 네트워크 compression에 대한 개념 및 Pruning에 대하여 정리하였다. 이번 포스터에서는 network compression 방법 중 하나인 quantization에 대하여 정리하고자 한다. Quantization의 개념 및 필요성 Quantization(양자화)이라는 단어는 컴퓨터공학 입문 정도의 강의에서 ..
Deep Learning Challenge 딥러닝 기술이 점점 더 어려운 문제를 해결하기 위해 사용하면서 딥러닝 네트워크의 크기가 매우 커지고 있다. 이번 포스터는 딥러닝 네트워크가 커지면서 발생하는 문제점들과 그 문제를 해결하기 위한 방법을 [1], [2], [3] 자료를 바탕으로 정리하고자 한다. 딥러닝 네트워크는 방대한 양의 parameters을 사용하면서 parameter들이 데이터의 특징을 학습하도록 한다. 딥러닝 기술을 더 복잡한 데이터의 특징을 학습하도록 하기 위해서 점점 더 많은 parameters가 사용되는 딥러닝 네트워크 구조가 제안되고 있다. 이때 어떤 문제를 충분히 잘 해결하는 최적의 딥러닝 네트워크를 찾는 것은 매우 힘들다(애초에 불가능할 수도 있다). 어떤 네트워크가 많은 수의 ..